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Abstract. An estimation of the Higgs boson mass is performed by numerically solving the renormalization
group equations in the two loop approximation based on the condition g2 = (5/3)g′2 = 4λ for SU(2)L,
U(1)Y gauge and the Higgs quartic coupling constants, respectively. This condition is introduced in the new
scheme of our noncommutative differential geometry (NCG) for the reconstruction of the standard model.
However, contrary to SU(5) GUT without supersymmetry, the grand unification of coupling constants is not
realized in this scheme. The physical mass of the Higgs boson depends strongly on the top quark mass mtop
through the Yukawa coupling of the top quark in the β functions. The two loop effect lowers the numerical
value calculated within the one loop approximation by several GeV. The Higgs boson mass varies from
150.93GeV to 167.96GeV corresponding to 169.47GeV ≤ mtop ≤ 181.00GeV. We find mH = 158.90GeV
for mtop = 175.01GeV and mH = 166.98GeV for mtop = 180.37GeV.

1 Introduction

The Higgs mechanism is essential for any spontaneously
broken gauge theory. Its presence ensures the renormal-
izability of the theory and makes the theory realistic by
giving masses to particles, such as gauge and matter fields,
through the vacuum expectation value of the Higgs boson
field. The standard model in particle physics also involves
the Higgs mechanism and shows remarkable agreement
with existing data. After the discovery of the top quark in
1994, the only undetected particle in the standard model is
the Higgs boson. Now, studies concerning the Higgs boson
search are being conducted in both theoretical and exper-
imental settings and it is expected that the Higgs boson
will be discovered within a decade in future experiments
at Fermi-Lab and CERN.

Many models (most notably, the technicolor model,
the Kaluza-Klein model and recently the approach based
on noncommutative differential geometry (NCG) on the
discrete) have been constructed for the purpose of under-
standing the Higgs mechanism. Among these, the NCG
approach, originally proposed by Connes [1], provides a
unified picture of gauge and Higgs fields as a generalized
connection on the principal bundle with the base space
M4 ×Z

N
. It should be noted that the NCG approach does

not demand any physical modes other than the usual one.
Many versions of the NCG approach have appeared

since Connes’s original presentation, and the standard
model has been successfully reconstructed using these ap-
proaches. The characteristic feature of the reconstruction
of the gauge theory in the NCG approach is to impose
restrictions on the gauge and the Higgs quartic coupling
constants. This is because the gauge and Higgs fields are

represented together as a generalized gauge field. These re-
strictions yield numerical estimates of the Weinberg angle
and mass relations involving the gauge boson and other
particles, such as the Higgs boson and top quark in tree
level. Several works have appeared [6–8] estimating the
quantum effects of these relations by assuming them to
hold at some renormalization point.

The present author has also proposed an unique for-
mulation based on a NCG [3,5]. Our formulation using
a NCG employs a generalization of the usual differential
geometry on an ordinary manifold to the discrete man-
ifold M4 × Z

N
. The reconstruction of SO(10) GUT and

the left-right symmetric gauge model [4] had already been
performed using our NCG scheme. In a NCG on M4 ×Z2,
the extra differential one-form χ in Z2 is introduced in ad-
dition to the usual one-form dxµ in M4, and therefore our
formulation is very similar to ordinary differential geom-
etry, contrastingly, in Connes’ original scheme the Dirac
matrices γµ and γ5 are used to describe the generalized
gauge field. In a NCG, the gauge field and the Higgs bo-
son field are given as coefficients of dxµ and χ, respec-
tively, in the generalized connection on M4×Z2. However,
there is no symmetry to mix dxµ and χ, and, therefore,
the ordinary gauge field cannot be transformed into the
Higgs boson field. In [5], the reconstruction of the standard
model is successfully carried out based on a new scheme
of our NCG. Three generations of fermions, including left
and right-handed quarks and leptons, are incorporated. In
addition, the strong interaction is nicely included in this
scheme. The relations g2 = (5/3)g′2 = 4λ are introduced
in [5], where g, g′ and λ are SU(2)L and U(1)Y gauge cou-
pling constants and the Higgs quartic coupling constant,
respectively. However, the grand unification for gauge cou-
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pling constants is not achieved in this scheme. The former
part of this relation leads to sin2 θW = 3/8, and the latter
part leads to the mass relation mH =

√
2mW. We assume

that the relations g2 = (5/3)g′2 = 4λ hold at one renor-
malization point. With this assumption, we can perform
the renormalization group analysis of the running coupling
constants g, g′ and λ, and the physical Higgs boson mass
can thus be estimated. Within the one loop approxima-
tion, this analysis was carried out in [8]. In that context,
we found mH = 164.01GeV for mtop = 175GeV. In this
article, we will perform the two loop analysis of the Higgs
boson mass using the same method.

2 The review of our NCG on M4 × Z2

We first briefly review our previous formulation [5], be-
cause it is not well-known among particle physicists. For
a detailed description, we refer the reader to [5].

Let us start with the equation of the generalized gauge
field A(x, y) on the principal bundle with the base space
M4 × Z2,

A(x, y) =
∑

i

a†
i (x, y)dai(x, y)

+
∑

j

b†j(x, y)dbj(x, y), (2.1)

where ai(x, y) and bj(x, y) are square-matrix-valued func-
tions and are taken so as to commute with each other,
because

∑
i a

†
i (x, y)dai(x, y) is the flavor sector, including

the flavor gauge and the Higgs fields, while∑
j b

†
j(x, y)dbj(x, y) corresponds to the color sector. The

indices i and j are variables of the extra internal space
which we cannot identify. The operator d in (2.1) is the
generalized exterior derivative defined as follows:

d = d+ dχ, (2.2)
dai(x, y) = ∂µai(x, y)dxµ, (2.3)
dχai(x, y) = [−ai(x, y)M(y) +M(y)ai(x,−y)]χ, (2.4)
dbj(x, y) = ∂µbj(x, y)dxµ, (2.5)
dχbj(x, y) = 0. (2.6)

Here, dxµ is the ordinary one-form basis taken to be di-
mensionless in Minkowski space M4, and χ is the one-
form basis also assumed to be dimensionless in the dis-
crete space Z2. We have introduced the x-independent
matrix M(y) whose hermitian conjugation is given by
M(y)† = M(−y). The matrix M(y) determines the scale
and pattern of the spontaneous breakdown of the gauge
symmetry. Thus, (2.6) implies that the color symmetry of
the strong interaction does not break spontaneously.

Using the algebraic rules in (2.2)-(2.6) and the shifting
rule invoked in [5], A(x, y) can be rewritten as

A(x, y) = Aµ(x, y)dxµ + Φ(x, y)χ+Gµ(x)dxµ, (2.7)

where

Aµ(x, y) =
∑

i

a†
i (x, y)∂µai(x, y), (2.8)

Φ(x, y) =
∑

i

a†
i (x, y) (−ai(x, y)M(y) +M(y)ai(x,−y))

= a†
i (x, y) ∂yai(x, y), (2.9)

Gµ(x) =
∑

j

b†j(x)∂µbj(x). (2.10)

The functions Aµ(x, y), Φ(x, y) and Gµ(x) here are iden-
tified with the gauge field in the flavor symmetry, Higgs
fields, and the color gauge field responsible for the strong
interaction, respectively. The gauge transformations of
these fields are well defined in the usual manner and it
follows that

H(x, y) = Φ(x, y) +M(y) (2.11)

is an un-shifted Higgs field whereas Φ(x, y) denotes a
shifted Higgs field with vanishing vacuum expectation
value. The nilpotency of d is proved using (2.2)-(2.6) along
with another algebraic rule in [5].

With these considerations, we can construct the gauge
covariant field strength,

F(x, y) = F (x, y) + G(x), (2.12)

where F (x, y) and G(x) are the field strengths of flavor
and color gauge fields, respectively, and given as

F (x, y) = dA(x, y) +A(x, y) ∧A(x, y),
G(x) = dG(x) + gsG(x) ∧G(x). (2.13)

Using the algebraic rules defined in (2.2)-(2.6), we have

F (x, y) =
1
2
Fµν(x, y)dxµ ∧ dxν

+DµΦ(x, y)dxµ ∧ χ+ V (x, y)χ ∧ χ, (2.14)

where

Fµν(x, y) = ∂µAν(x, y) − ∂νAµ(x, y)
+[Aµ(x, y), Aµ(x, y)], (2.15)

DµΦ(x, y) = ∂µΦ(x, y) +Aµ(x, y)(M(y) + Φ(x, y))
−(Φ(x, y) +M(y))Aµ(x,−y), (2.16)

V (x, y) = (Φ(x, y) +M(y))(Φ(x,−y)
+M(−y)) − Y (x, y). (2.17)

The quantity Y (x, y) in (2.17) is auxiliary field and ex-
pressed as

Y (x, y) =
∑

i

a†
i (x, y)M(y)M(−y)ai(x, y). (2.18)

This function may become a constant field in the present
construction. In contrast to F (x, y), G(x) is simply de-
noted as

G(x) =
1
2
Gµν(x)dxµ ∧ dxν

=
1
2
{∂µGν(x) − ∂νGµ(x)

+gs[Gµ(x), Gµ(x)]}dxµ ∧ dxν . (2.19)



Y. Okumura: An estimate of the Higgs boson mass 713

With the same metric structure as in [5] we can obtain
the gauge invariant Yang-Mills-Higgs Lagrangian (YMH)

LYMH(x) = −Tr
∑
y=±

1
g̃2 < F(x, y),F(x, y) >

= −Tr
∑
y=±

1
2g̃2F

†
µν(x, y)Fµν(x, y)

+Tr
∑
y=±

1
g̃2 (DµΦ(x, y))†DµΦ(x, y)

−Tr
∑
y=±

1
g̃2V

†(x, y)V (x, y)

−Tr
∑
y=±

1
2g̃2G

†
µν(x)Gµν(x). (2.20)

Here, Tr denotes the trace over internal symmetry matri-
ces including the color, flavor symmetries and generation
space. The third term on the right-hand side is the poten-
tial term of the Higgs particle.

3 A numerical estimation
of the Higgs boson mass

In reconstructing the standard model in the present
scheme, three generations of left and right-handed quarks
and leptons together with the strong interaction must be
taken into account. A characteristic point of this formula-
tion is to take the left and right-handed fermions ψ(x, y)
with arguments x and y(= ±) in M4 and Z2, respectively,
as

ψ(x,+) =




ur
L

ug
L

ub
L

νL

dr
L

dg
L

db
L

eL



, ψ(x,−) =




ur
R

ug
R

ub
R

0
dr

R

dg
R

db
R

eR



, (3.1)

where the subscripts L and R denote the left-handed and
right-handed fermions and the superscripts r, g and b rep-
resent the color indices. It should be noted that ψ(x, y) has
an index for the three generations, as do the explicit ex-
pressions for fermions on the right-hand sides of (3.1).
Thus, ψ(x,±) is a vector in the 24-dimensional space.
In order to construct the Dirac Lagrangian of the stan-
dard model corresponding to ψ(x,±) in (3.1), we need a
24-dimensional generalized covariant derivative composed
of gauge and Higgs fields on M4 × Z2. The gauge fields
Aµ(x, y) and Gµ(x) in this covariant derivative must con-
stitute the differential representation of the fermion fields
in (3.1), and therefore they are expressed in 24 × 24 ma-
trix forms. The Higgs field Φ(x, y) is also taken to give the
correct Yukawa interaction in the Dirac Lagrangian and
is expressed as a 24 × 24 matrix (see [5] for details). We

find Yang-Mills-Higgs Lagrangian for the standard model
as follows:

LYMH = −1
4

3∑
k=1

(
F k

µν

)2 − 1
4
B2

µν

+|Dµh|2 − λ(h†h− µ2)2

−1
4

8∑
a=1

Ga
µν

†Gaµν , (3.2)

where

F k
µν = ∂µA

k
ν − ∂νA

k
µ + gεklmAl

µA
m
ν , (3.3)

Bµν = ∂µBν − ∂νBµ, (3.4)

Dµh = [ ∂µ − i

2
(
∑

k

τkgAk
Lµ + τ0 g′Bµ ) ]h,

h =
(

φ+

φ0 + µ

)
, (3.5)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gcf

abcGb
µG

c
ν , (3.6)

with the following restrictions for coupling constants:

g2 =
g̃2

12
, g′2 =

g̃2

20
, λ =

g̃2

48
, g2

c =
g2

s g̃
2

12
. (3.7)

Equation (3.7) leads to the relation between coupling con-
stants:

g2 =
5
3
g′2 = 4λ 6= g2

c , (3.8)

which implies that the weak, electromagnetic and Higgs
quartic coupling constants become equal and also yields
sin2 θW = 3/8 for the Weinberg angle as well as the mass
relations

m2
W =

1
4
g2v2, m2

Z =
2
5
g2v2, m2

H =
1
2
g2v2. (3.9)

with the vacuum expectation value of the Higgs boson v.
These relations hold only at tree level. Here, we assume
that these relations hold at a renormalization point and
consider their quantum effects by use of the renormaliza-
tion group (RG) equations.

With the notation

α3 =
g2

c

4π
, α2 =

g2

4π
, α1 =

5
3
g′2

4π
, αH =

λ

4π
(3.10)

for SU(3)c, SU(2)L and U(1)Y gauges and the Higgs quar-
tic coupling constants, respectively, the RG equations for
these coupling constants are expressed as

µ
∂αi

∂µ
= βi, (i = 1, 2, 3), µ

∂αH

∂µ
= βH, (3.11)

where the β-functions in the right hand sides are given
in [9] in the two loop approximation. The Yukawa cou-
pling constants of quarks written in 3 × 3 matrix form in
three generations are included in these β-functions. We
now assume the top quark mass is dominant in the eval-
uation of the RG equations. Masses of all particles in the
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standard model are introduced through the vacuum ex-
pectation value v of the Higgs field. In this context, the
running masses of gauge and Higgs bosons are defined as

mW =
√
πα2v, mH =

√
8παHv. (3.12)

The top quark mass is also expressed as

mtop =
√

2παYv, (3.13)

with the Yukawa coupling constant αY whose RG equation
is also given in [10]. The RG equation for v is also given
in [10] in the two loop approximation.

The RG equations for αi (i = 1, 2, 3), αH, αY and v
are highly non-linear equations with complicated coupling.
In order to solve these equations, we need six conditions.
Three of these conditions, those for αi (i = 1, 2) and v,
are given experimentally as [10]

α1(0) = 0.01698, α2(0) = 0.03364,
v(0) = 246.22GeV, (3.14)

and the initial condition for α3 is given as [11]

α3(0) = 0.118 ± 0.003, (3.15)

at µ = mZ with the variable t = log(µ/mZ). That is,
these conditions are given at the neutral gauge boson mass
mZ = 91.187GeV. According to (3.13), the physical top
quark mass mtop satisfies the equation

mtop =
√

2παY(ttop)v(ttop), (3.16)

where ttop = log(mtop/mZ). This equation constitutes one
condition to solve the RG equations. The remaining con-
dition is

α2(t0) = α1(t0) = 4αH(t0), (3.17)

where t0 is a constant, fixed in the numerical calculations.
The value of t0 determines the energy at which the weak,
electromagnetic and Higgs quartic interactions are unified.
With these considerations, we can find the running Higgs
boson mass from (3.12) as

mH(t) =
√

8παH(t)v(t). (3.18)

The physical Higgs boson mass mH is determined by im-
posing the condition that

mH =
√

8παH(tH)v(tH) (3.19)

with tH = log(mH/mZ).
The top quark mass has a considerable effect on the

Higgs boson mass through (3.16). The world average value
of the top quark mass mtop from the experiments of CDF
and D0 was reported in review works [12] as

mtop = 175 ± 6GeV. (3.20)

We investigated the Higgs boson mass by varying the top
quark mass in the range of (3.20). Table 1. shows the phys-
ical Higgs boson mass versus the top quark mass numer-
ically calculated at α3(0) = 0.118 in (3.15). Compared

Table 1. Higgs boson mass versus top quark mass

top quark (GeV) Higgs boson (GeV)
169.47 150.93
170.15 151.88
171.69 154.07
172.46 155.18
173.40 156.55
174.35 157.93
175.01 158.90
176.13 160.56
177.16 162.10
178.26 163.77
179.19 165.16
180.37 166.98
181.00 167.96
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40

60
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t=log( µ /mZ)

 
Fig. 1. The running of the three coupling constants

with the one loop analysis of the Higgs boson mass in
[8], two loop effects lower the numerical values by around
6GeV because, for example, mH = 164.01GeV for mtop =
175GeV in the one loop analysis. This difference seems
crucial since a Higgs boson with mass below 160GeV could
not decay into W+W− and also experiments designed
to search for the Higgs boson depend greatly upon the
present analysis. It should be noted that owing to the uni-
tarity requirement, mtop cannot exceed 190GeV because
λ would become minus at a much higher value of t in such
a case. It is important to investigate the dependence of
α3(0) on the Higgs boson mass because of its rather large
error shown in (3.15). We obtain the numerical results
that mH = 157.80GeV at mtop = 175.04GeV and α3(0) =
0.121, and mH = 160.09GeV at mtop = 175.02GeV and
α3(0) = 0.115. Thus, these results lead to the conclusion
that the experimental errors of α3(0) in (3.15) do not af-
fect the estimation of the Higgs boson mass significantly.

It is interesting to investigate the running of the gauge
and Higgs quartic coupling constants, because these cou-
pling constants are unified at a point t0 as shown in (3.17).
Figure 1 displays the running of the three coupling con-
stants.
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4 Conclusion

In this paper, we have determined the Higgs boson mass
by numerically solving the renormalization group equa-
tions with the relation between coupling constants (3.8). It
is introduced in the reconstruction of the standard model
based on our new scheme of NCG [5]. We assumed that
(3.8) holds at a renormalization point t0. However, this
leads to an interesting result that the weak, electromag-
netic and Higgs quartic coupling constants become equal
at t0 as shown Fig. 1. In the case of mtop = 175.01GeV,
t0 = 25.636 which amounts to µ = 1.24 × 1013GeV.

We obtain 150.93GeV ≤ mH ≤ 167.96GeV in the range
of top quark mass 169.47GeV ≤ mtop ≤ 181.00GeV. We
hope that this result will be useful for experiments search-
ing for the Higgs boson.
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